

Next Generation Technology for Identification of Genomic Alterations in MPNs

Presented by Terra Lasho

Mayo Clinic, Rochester, MN, USA

Advanced Genomics Technology Center

Genotyping Shared Resource Vision

To become a leader in genomic analyses for Mayo investigators and medical researchers around the world providing the highest quality data in order to enable enhanced understanding of human disease, improve health, and promote excellence in patient care

Genotyping Shared Resource Mission

Providing centralized genomic analyses services to Mayo investigators and collaborators around the world. Offering individualized customer service, including study design consultation and result interpretation. We strive for the highest quality data in the most efficient manner.

- >> Whole-Genome
- » Gene Association
- » Copy Number Variation
- » Focused and Custom Analyses
- » Repeat and Single Nucleotide Polymorphism's
- » Methylation Analyses
- » Linkage Analyses
- » Array CGH

Next Generation Technology represents a quantum advance in the ability to understand cancer genetics

Use of Mate Pair Library Sequencing to Identify a Novel Recurrent Translocation in T-cell Lymphomas

Andrew L. Feldman, M.D.

Brief report

Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing

Andrew L. Feldman, Ahmet Dogan, David I. Smith, Mark E. Law, Stephen M. Ansell, Sarah H. Johnson, Julie C. Porcher, Nazan Özsan, Eric D. Wieben, Bruce W. Eckloff, and George Vasmatzis

¹Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; ²Division of Hernatology, Mayo Clinic, Rochester, MN; ³Department of Molecular Medicine and Center for Individualized Medicine, Mayo Clinic, Rochester, MN; ⁴Department of Pathology, Ege University, Izmir, Turkey; and ⁵Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN

The genetics of peripheral T-cell lymphomas are poorly understood. The most well-characterized abnormalities are translocations involving ALK, occurring in approximately half of anaplastic large cell lymphomas (ALCLs). To gain insight into the genetics of ALCLs lacking ALK translocations, we combined mate-pair DNA library construction, massively parallel ("Next Gen-

eration") sequencing, and a novel bioinformatic algorithm. We identified a balanced translocation disrupting the *DUSP22* phosphatase gene on 6p25.3 and adjoining the *FRA7H* fragile site on 7q32.3 in a systemic ALK-negative ALCL. Using fluorescence in situ hybridization, we demonstrated that the t(6;7)(p25.3;q32.3) was recurrent in ALKnegative ALCLs. Furthermore, t(6;7)(p25.3;

q32.3) was associated with down-regulation of *DUSP22* and up-regulation of *MIR29* microRNAs on 7q32.3. These findings represent the first recurrent translocation reported in ALK-negative ALCL and highlight the utility of massively parallel genomic sequencing to discover novel translocations in lymphoma and other cancers. (*Blood*. 2011:117(3):915-919)

Mate Pairs

- Fragment DNA (5kb)
- End Repair/ Label
- Gel for size (5kb)
- Circularize
- Digest Linear DNA
- Fragment circularized DNA (500bp)
- Purify Biotinylated DNA
- End Repair/ligate adaptors
- Final Size selection (350-600bp)
- Bridge amplification

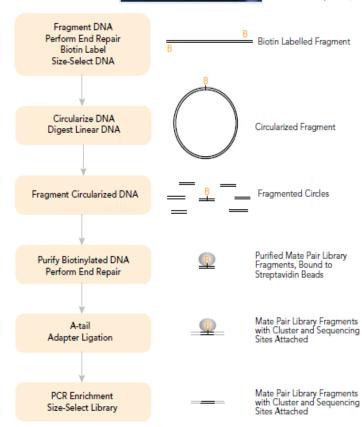
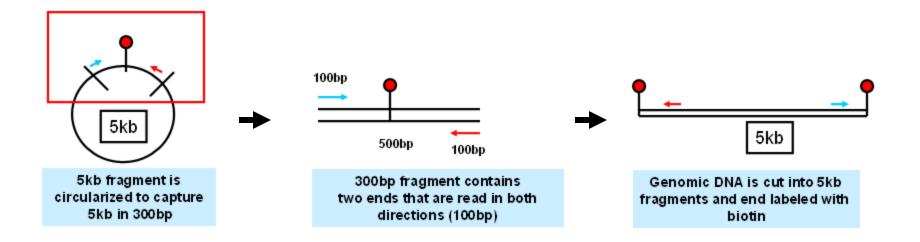
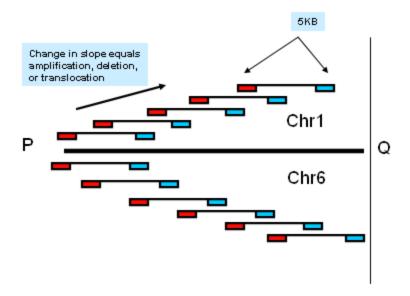




Figure 1 Mate Pair Library Preparation Overview

Algorithm

32bp fragments

Address

AAATTGTCGTAGTCGATGCTAGTCG....

000001011001011011010

Steps through Genome

AAATTGTCGTAGTCGATGCTAGTCG.... 00000101110111011010

A - 00 T - 01

C - 10

G - 11

Binary code:

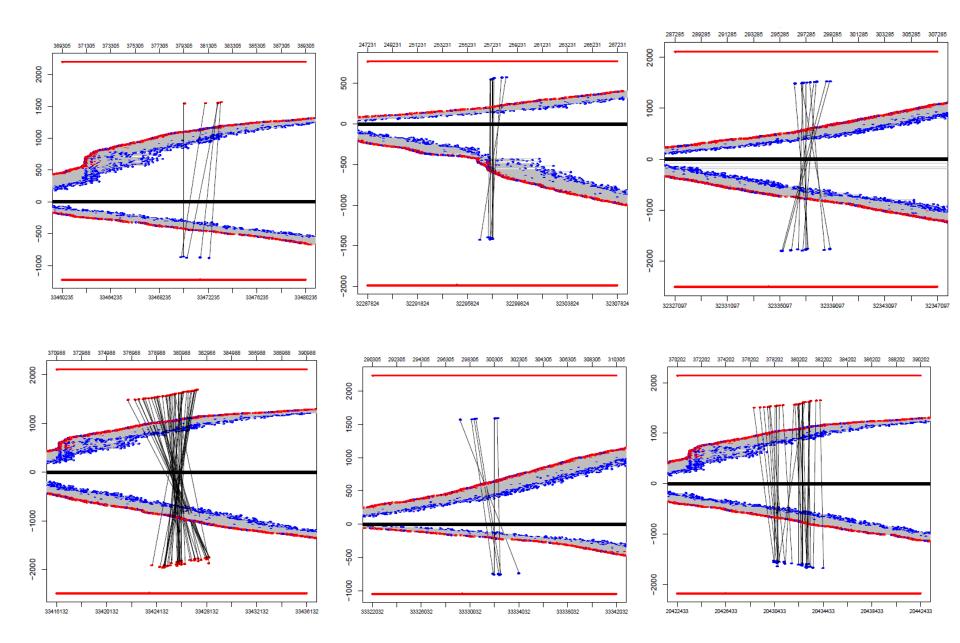
Index table construction: AGTA to code (0010) to address in index (1718215) to genome position (1)

This is not a number index, but an address to a location per the reference Genome

George Vasmatzis, Ph.D.

Sarah H. Johnson

Table of putative translocations


16	AATTTG	TCAAAC	8	11	53	-39	52730159	-38809361	8q11.23a	11p12c
20	GGAATL	TTAGCA	8	11	53	-39	52731338	-38809506	8q11.23a	11p12c
20	TATGTT	AAAATG	8	11	53	-39	52731096	-38809651	8q11.23a	11p12c
2	CATTCT	TTATCT	8	11	53	-39	52730285	-38809642	8q11.23a	11p12c
37	TATATO	ACAATA	8	11	53	-39	52731324	-38810513	8q11.23a	11p12c
17	CAGATO	ACTTTT	8	11	53	-39	52730533	-38808643	8q11.23a	11p12c

Human BLAT Results

BLAT Search Results

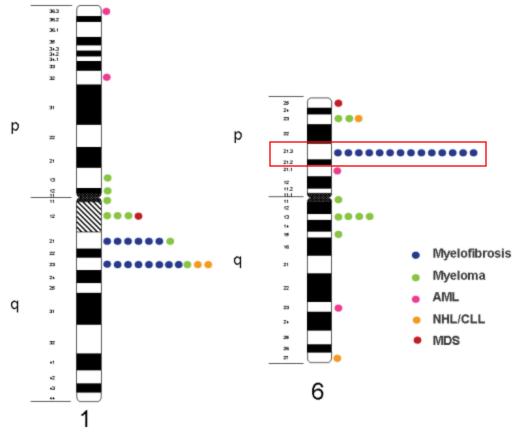
ACTIONS	QUERY	SCORE	START	END	QSIZE	IDENTITY	CHRO	STR	AND START	END	SPAN
browser details	YourSeq	100	1	100	200	100.0%	11	_	38809390	38809489	100
browser details	YourSeq	99	101	200	200	100.0%	8	+	52730224	52730323	100
browser details	YourSeq	29	133	173	200	96.8%	3	+	107608969	107609281	313
browser details	YourSeq	26	157	200	200	67.9%	X	_	50157571	50157601	31
browser details	YourSeq	26	132	173	200	78.6%	1	+	75234446	75234483	38
browser details	YourSeq	22	156	178	200	100.0%	7	_	71904460	71904486	27
browser details	YourSeq	21	151	172	200	100.0%	2	_	53132815	53132837	23
browser details	YourSeq	20	125	144	200	100.0%	4	+	31617668	31617687	20

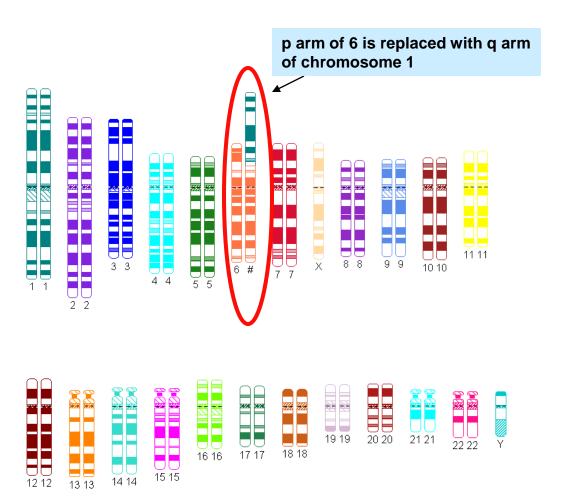
AATGCGATCGACCGGTGTGTACAGG------GTACATGTACAGATAGACACAGTGGGG

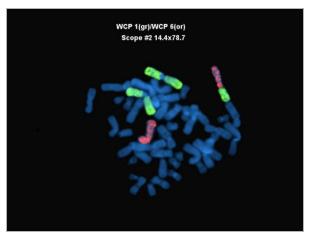
Immediate Objectives

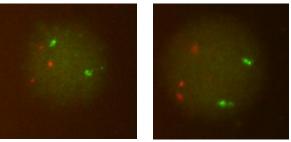
- Interrogate cytogenetically apparent translocations in order to define precise breakpoints and involved genetic regions.
- Identify cytogenetically occult novel genetic translocations that are recurrent in MPN and characterize them further.

der(6)t(1;6)(q21-23;p21.3)

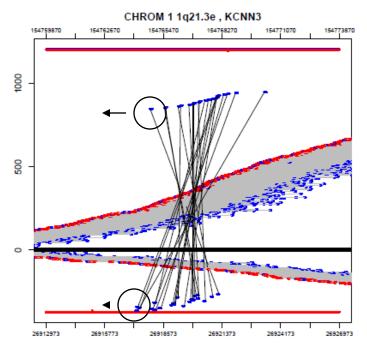



Figure 1. Ideogram showing breakpoints on both chromosomes matched with respective diagnosis. All patients with MMM had the same breakpoint on 6p21.3 and clustering of breakpoints on 1q(21–23). None of the remaining 13 patients with t(1;6) had the same breakpoints, which makes this chromosome anomaly specific for MMM. AML, acute myeloid leukaemia; NHL, non-Hodgkins lymphoma; CLL, chronic lymphocytic leukaemia; MDS, myelodysplastic syndrome.

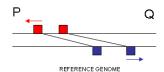

17,791 pts tested (cyto reports)

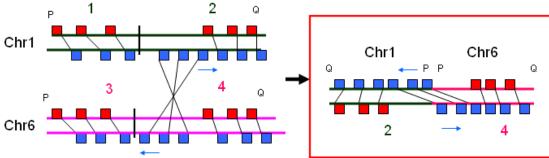

 -25 pts had translocations involving Chr 1 and Chr 6
 -12 pts had same breakpoint and were all PMF (1 PPMM,1PTMM)

Der(6)t(1;6)(q21-23;p21.3): the most specific chromosomal translocation in myelofibrosis with myeloid metaplasia.



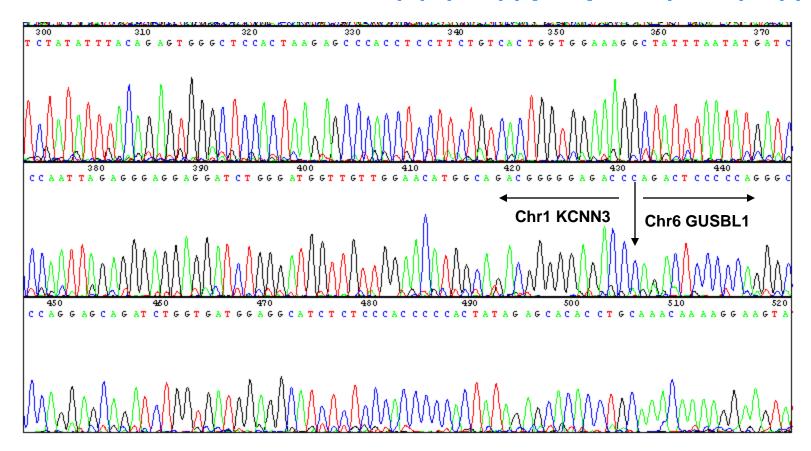
In situ fluorescence showing different Chromosome 6 breakpoints


Case #1: 46,XY,der(6)t(1;6)(q21;p21.3),del(20)(q11.2)



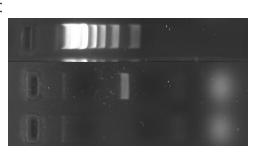
CHROM 6 6p22.2a, GUSBL1

t(1;6) associates


	read1	read2	chrm 1 position	chrm 6 position
1	GAGCAGTGATGTAAACAGAGGAATATATTG	AGCCATGCCACTGGGTATTAGGCTAGCCACTGC	154768021	26917362
2	ACACAAGAATTACTCATACATAAAAATCCTG	TGAGGCTCCGTGGGGGCACTGAAAGTTGGTGG	154768086	26917482
3	CTGGGTGGGAGAGCATCCGTCATTCCATCA	ATTCTAACATTGACCATATGCTTGGTCATAAAG(154766292	26919285
4	CAGCAAACCCAGCTAGGTACTATAAAAGGT	CTATACTTAGTTACTGAGACAGGCATAAATTTAC	154767450	26918208
5	CTATTCCAGAAAAGTTGAAGAGAACGTACT	AAATCATGTGCCAAGTGAGGTGTCAGACATGCA	154765561	26920144
6	CAGGTCAATCAGAAAGAACGGGCTATTGAA	AGGTGACCACTGTTGATGAACATAGACTCAAAA	154765521	26920251
7	AGAAGATGTTTACAGGACTTTCTGCAACCA [*]	CGGCTTGAGGCCAGGAGCTCAAGCCTGCAGTG	154764839	26921232
8	ATCTACGACTCATTGTCATTCCTAGAAGAGA	TGTTGGGGGATGAGTGGAGGTGGCGAATACTG	154768530	26918077
9	TGGCTAACCAAAAACTGAAGGTCTGGGATT	ATTGTAGGAGACTTCAACACCCCCGCTGGCAG(154767618	26919109
10	GGAGTCTAGACTGTATTCTAAGGACAAGGA	TAAACTAAACTTCCTAAGTGAAGAAGAAACAAA	154768348	26918462
11	ATCTTCCAAGATTGAATCAGGAAGATACTTA	TGCAAGATCAGTCTTGCTTGTGAAGAACTGAGT	154766870	26919973
12	GCACTGCATCATCAAAGCAGACAACTAAGA	CACCTCTGCAGTGGTAGTGTCGAGTCCCCCACC	154767794	26919140
13	TTGAGGACAGAGACCATGTCTGTTTCTATG	GACTCAAAAATTCTCAACAAAGTACTAGCAAAC	154766689	26920275
14	TACTTAAGTACCCTAAATATAAATGCACCCA	TGCTGTATAAGGCATGGGGACTCAAAGAGGCA	154767955	26919010
15	TACCAAGCCAAAAAGCCCTGGACTATATGG	TCAGGGACCCTCTGAGAGGAGAAAAAACTTGC	154766915	26920057
16	TGAGCCCATCTAGAAAGAATGCTGGGATCG	CAGACATATAAAATAATCCTCAGAGAATACTAG	154767193	26919876
17	GTTAACGTAGTTGACTAAGCTGACTTAGTCA	AAGAACACAATCATATTTACAACACCTAGGATG	154766168	26920941
18	AACCCAGCTAGGTACTATAAAAGGTGACTA	TAGATATCATTTTTATTGGGTAAAAAAAAAATT	154768916	26918213
19	TAAATGCCTTTATCATAAAGTTAGAAATATT	GTAAATGAGCAGTGATGTAAACAGAGGAATATA	154768015	26919574
20	TCTAGGCCTCAGTTTCCTCATCTGTTCAATA	AGGAAGTATAAAACAGCCATGCCACTGGGTATI	154770292	26917348

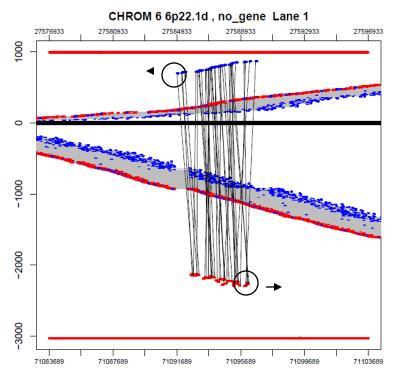
MAYO CLINIC

Case #1: 46,XY,der(6)t(1;6)(q21;p21.3),del(20)(q11.2)

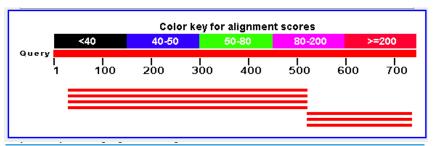


ATGGTTGTTGGAACATGGCAGACGGGGGAGACCC-----AGACTCCCCCAGGGCCCAGGAGCAGATCTGGTGATGC

1KB Ladder

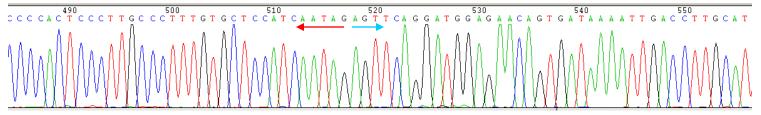

Case #1

Normal

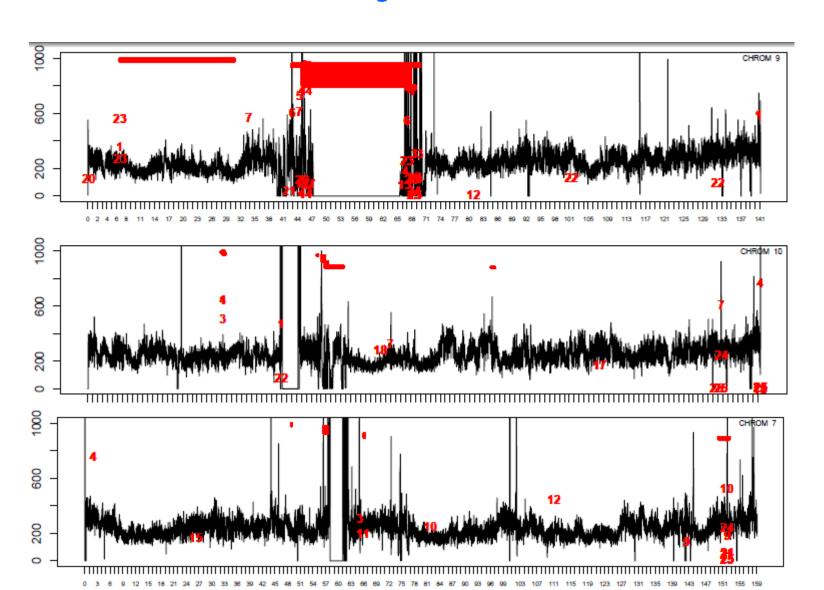


Case #2: 46,XX,der(6)t(1;6)(q23;p21.3)

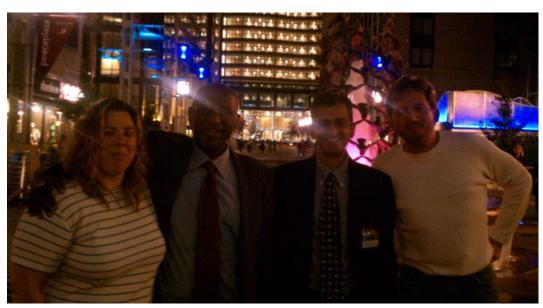
CHROM 16 16q22.2a, HYDIN


Accession	Description
NT 167207.1	Homo sapiens chromosome 1 unlocalized genomic contig, GRCh37.p2
NW 927421.1	Homo sapiens unplaced genomic contig, alternate assembly Hs_Celer
NT 010498.15	Homo sapiens chromosome 16 qenomic contiq, GRCh37.p2 reference
NW 001838320.2	Homo sapiens chromosome 16 qenomic contiq, alternate assembly Ht
NT 007592.15	Homo sapiens chromosome 6 qenomic contiq, GRCh37.p2 reference p
NW 001838980.1	Homo sapiens chromosome 6 qenomic contiq, alternate assembly Huf
NW 923073.1	Homo sapiens chromosome 6 genomic contig, alternate assembly Hs_

Normal


1KB Ladder

2nd Objective....



Tefferi Laboratory

- Ayalew Tefferi
- Animesh Pardanani
- Terra Lasho
- Christy Finke
- Steven Zincke

Bioinformatics

- George Vasmatzsis
- Sarah Johnson

