# STEM CELL TRANSPLANTATION IN MYELOFIBROSIS





#### **Giovanni Barosi**

Unit of Clinical Epidemiology/Center for the Study of Myelofibrosis. IRCCS Policlinico S. Matteo Foundation, Pavia, Italy

> 1° Annual Florence Meeting on Myeloproliferative Neoplasms, Florence, 16th April 2011

# **Critical Issues**

- Decision
- Risk communication (how and what)
- Prognostic factors
- Pre-transplant splenectomy/spleen reduction
- Conditioning regimen (myeloablative vs nonmieloablative; high-toxicity vs low-toxicity)
- Immunosuppressive regimen
- Monitoring after transplant

# Allogeneic Stem Cell Transplant in Myelofibrosis

Who and when to transplant

# **Deciding transplant**

- 1. Evidence-based decision (clinical trials)
- No clinical controlled trials in myelofibrosis
- Theoretically feasible (genetic allocation/randomization)
- Genetic randomization in chronic diseases difficult
- No projects (to my knowledge)

# **Deciding transplant**

1. Evidence-based decision (clinical trials)

2. Inductive reasoning (compare the outcomes of transplant vs. non transplant in comparable populations of subjects)

Overall survival of 65 young patients (age < 60 years) with primary myelofibrosis and high-or intermediate-risk disease category at Mayo Clinic



The 1- and 3-year survival rates were 87% and 55% respectively

Siragusa et al, Am J Hematol 2009

| Reference                       | N. of<br>patients | Median<br>age (years) | Intermediat<br>e/high risk | Survival      |  |  |  |
|---------------------------------|-------------------|-----------------------|----------------------------|---------------|--|--|--|
| Myeloablative conditioning      |                   |                       |                            |               |  |  |  |
| Guardiola et al                 | 55                | 42                    | 76%                        | 31% at 5 y    |  |  |  |
| Deeg et al                      | 56                | 43                    | 53%                        | 58% at 3 y    |  |  |  |
| Kerbauy et al.                  | 104               | 49                    |                            | 61% at 7 y    |  |  |  |
| Reduced-intensitiy conditioning |                   |                       |                            |               |  |  |  |
| Rondelli et al.                 | 21                | 54                    | 100%                       | 85% at 2.5 y  |  |  |  |
| Bacigalupo et al.               | 46                | 51                    | 91%                        | 45% at 5 y    |  |  |  |
| Kroeger et al.                  | 103               | 55                    | 88%                        | 67% at 5y     |  |  |  |
| Various conditioning            |                   |                       |                            |               |  |  |  |
| Patriarca et al.                | 52                | 53                    | 89%                        | 54%           |  |  |  |
| Gupta et al.                    | 46                | 47-54                 | 84.7%                      | 48-68% at 3 y |  |  |  |
| Ballen et al.                   | 289               | 45                    | 67%                        | 39% at 5 y    |  |  |  |

# Comparison of survival rates with HSCT and medical therapy in patients with highintermediate-risk myelofibrosis

- •The survival rates with HSCT differ among the studies.
- •The most numerous study (Ballen, 2010) reports 5-year overall survival rates from 30 to 40%
- •The more optimistic is the European study from Kroeger (2010) that reports 5-year survival rate of 67%

•The survival rates with HSCT do not appear to be substantially different than those obtained of patients with myelofibrosis who did not receive HSCT (55% at 3 years) Philadelphia–Negative Classical Myeloproliferative Neoplasms: Critical Concepts and Management Recommendations from European LeukemiaNet Barbui et al. JCO 2011

"It is reasonable to justify the risk of allo-SCT-related complications in otherwise transplant-eligible patients whose median survival is expected to be less than 5 years. This would include IPSS high (median survival ~27 months) or intermediate-2 (median survival ~48 months) risk patients as well as those with either red blood cell transfusion-need (median survival ~20 months) or unfavorable cytogenetic abnormalities (median survival ~40 months). "

# Deciding Allo-SCT in Myelofibrosis by inductive reasoning



## **Criticism to decision by inductive reasoning**



# **Criticism to decision by inductive reasoning**

It neglects:

- Early-immediate death due to transplant
- The individual chance of survival (disease stage-independent)
- 3. The quality of life after transplant

# **Deciding transplant**

- 1. Evidence-based decision (clinical trials)
- 2. Inductive reasoning (compare the outcomes of transplant vs. non transplant in comparable populations of subjects)
- An analytical approach (decision analysis model that takes into account the disvalue of early death, the quality of life after transplant, and the individual survival chance)

# Valuing early death

| Reference                       | N. of<br>patients | Median<br>age (years) | Transplant-<br>related<br>mortality |  |  |  |
|---------------------------------|-------------------|-----------------------|-------------------------------------|--|--|--|
| Myeloablative conditioning      |                   |                       |                                     |  |  |  |
| Guardiola et al                 | 55                | 42                    | 27% at 1 y                          |  |  |  |
| Deeg et al                      | 56                | 43                    | 20% at 1 y                          |  |  |  |
| Kerbauy et al.                  | 104               | 49                    | 34% at 5 y                          |  |  |  |
| Reduced-intensitiy conditioning |                   |                       |                                     |  |  |  |
| Rondelli et al.                 | 21                | 54                    | 10% at 1 y                          |  |  |  |
| Bacigalupo et al                | 46                | 51                    | 24% at 5 y                          |  |  |  |
| Kroeger et al.                  | 103               | 55                    | 16% at 1 y                          |  |  |  |
| Various conditioning            |                   |                       |                                     |  |  |  |
| Patriarca et al                 | 52                | 53                    | 30% at 1 y                          |  |  |  |
| Gupta et al                     | 40                | 47-54                 | 23-39%                              |  |  |  |
| Ballen et al                    | 289               | 45                    | 22% at day 100                      |  |  |  |

# Early death for transplant in myelofibrosis

#### Early transplant related mortality:

•10 to 16% with reduced intensity conditioning

•20 to 30% with myeloablative conditioning

# **Risk aversion and time-discounting**

• Time preferences for life-years assumes that persons value present time more than they do distant time.

• Decision analysis models these concepts by a **declining exponential function of life years**. For example, at a 10% annual time discount rate, 1 year of life now is equivalent to 0.90 years of life next year, which is equivalent to 0.81 years of life 2 years from now

• Rates from near zero to more than 200% have been found in literature

#### Unrelated Donor Bone Marrow Transplantation for Chronic Myelogenous Leukemia: A Decision Analysis

Stephanie J. Lee, MD, MPH; Karen M. Kuntz, ScD; Mary M.
Horowitz, MD, MS; Philip B. McGlave, MD;
John M. Goldman, DM; Kathleen A. Sobocinski, MS; Janet
Hegland, BS; Craig Kollman, PhD;
Susan K Parsons, MD, MRP; Milton C. Weinstein, PhD; Jane
C. Weeks, MD, MS; and Joseph H. Antin, MD

Annals of Internal Medicine, 1997

Structure of the Markov model.



Lee S J et al. Ann Intern Med 1997;127:1080-1088



**Unrelated Donor Bone Marrow Transplantation for Chronic Myelogenous Leukemia: A Decision Analysis** (Lee SH et al. Ann Intern Med, 1997)

• Transplantation within the first year after diagnosis maximizes quality adjusted, discounted life expectancy.

• When the annual discount rate is greater than 21% (1 year of life now is equivalent to 0.87 years of life next year, which is equivalent to 0.76 years of life, 2 years from now), the model predicted that quality adjusted life survival is maximized by no transplantation

# **Quality of life with transplant**

## **Quality of life and Transplant**

 Studies on quality of life post-transplant have indicated GVHD as the main determinant of morbidity

• Although chronic GVHD often resolves in practice, most patients with this complication have ongoing compromised quality of life

| Reference                       | N. of<br>patients | Median age<br>(years) | Chronic GVH-<br>grade |  |  |  |
|---------------------------------|-------------------|-----------------------|-----------------------|--|--|--|
| Myeloablative conditioning      |                   |                       |                       |  |  |  |
| Ballen et al                    | 289               | 45                    | 23-40%                |  |  |  |
| Guardiola et al.                | 55                | 42                    | Limited 40.7%         |  |  |  |
|                                 |                   |                       | Extensive: 59.3%      |  |  |  |
| Deeg et al                      | 56                | 43                    | Limited: 5.5%         |  |  |  |
|                                 |                   |                       | Extensive: 51.8%      |  |  |  |
| Kerbauy et al.                  | 104               | 49                    |                       |  |  |  |
| Reduced-intensitiy conditioning |                   |                       |                       |  |  |  |
| Rondelli et al.                 | 21                | 54                    | Limited: 28%          |  |  |  |
|                                 |                   |                       | Extensive:44%         |  |  |  |
| Bacigalupo et al.               | 46                | 51                    | 21-37%                |  |  |  |
| Kroeger et al.                  | 103               | 55                    | Limited: 24%;         |  |  |  |
|                                 |                   |                       | extensive: 24%        |  |  |  |
| Patriarca et al.                | 52                | 53                    | Limited: 35%          |  |  |  |
|                                 |                   |                       | Extensive: 15%        |  |  |  |

### **GVHD** in transplant for myelofibrosis

Extensive, chronic GVHD occurs in:

- •52-59% of patients transplanted with myeloablative conditioning
- •15-44% of patients with reduced-intensity conditioning

Transplant- and disease-specific prognostic factors

# A Disease Specific Prognostic Score

Center: Genua; N= 40; Conditioning: RIC with Thiotepa and Cyclo

| Variable                  | Univariate | Multivariate |     |
|---------------------------|------------|--------------|-----|
|                           | P value    | P value      | RR  |
| Peripheral blasts >1%     | 0.04       |              |     |
| BM blasts >5%             | 0.04       |              |     |
| AML-like chemotherapy     | 0.08       |              |     |
| Interval Dx/Tx >1013 d.   | 0.4        |              |     |
| Transfusions =>20         | 0.01       | 0.007        | 5.2 |
| Spleen > 22 cm            | 0.02       | 0.01         | 3.8 |
| Splenectomy yes/no        | 0.4        |              |     |
| Lille Score               | 0.9        |              |     |
| Donor HLA (id./unrelated) | 0.1        |              |     |
| Donor age                 | 0.9        |              |     |
| Patient age               | 0.8        |              |     |

#### Spleen >22 cm: score 1 Transfusions >20: score 1 Alternative donor: score 1

#### Low risk= score 0-1 High risk =score 2-3



## **Best results for allo TX**

- With favourable cytogenetics
- With short interval Dx TX
- Untransfused
- Low grade fibrosis
- With moderate, small splenomegaly
- JAK2 V617F positive

# Conclusion

• Today we can only use inductive reasoning for deciding transplant in myelofibrosis

• Patients preferences about risk aversion, the impact of quality of life after transplant and the individual prognostic factors against transplant should be considered.

• A decision analysis model would help in revealing the most sensitive factors in the decision.

