Deciphering the paradigma of thrombosis in MPN

Tiziano Barbui MD

Research Foundation and Hematology Ospedali Riuniti, Bergamo, Italy

1st Annual Florence Meeting on Myeloproliferative Neoplasms & the Annual IWG-MRT Workshop

Supported by an unrestricted education grant from Mary and Salomon Terner

April 16th 2011 Palazzo Vecchio, Florence

Jean Luc Villeval, Institut Gustave Roussy, Paris, France

http://mpn-florence.com

Deciphering the paradigma of thrombosis in MPN

What is known What should be done

PV: Major Vascular Events During Follow-up in ECLAP study

Definition of "High-risk":

risk of a serious vascular event more than about <u>3% per annum</u> because of previous occlusive disease or a predisposing condition

Antithrombotic Trialists' Collaboration

Risk Factors for Thrombosis in ET: Age and History of Thrombosis *Events During Follow-up in BVF study*

Low-risk (*n*=517)

(left untreated)

Rate: 1.5 (%/patients/year)

High risk (n=546) (100% treated)

2.0 (%/patients/year)

Carobbio A et al., Blood 2008

Main outcome events during follow-up in 891 strictly defined WHO-ET patients

	No	%	Rate, % patient-years (95% CI)
Patients with nonfatal thrombotic events	109	12	1.7 (1.4-2.1)
Arterial	79	9	1.2 (1.0-1.5)
AMI	17	2	0.26 (0.16-0.42)
Stroke-TIA	47	5	0.73 (0.54-0.97)
PAT	15	2	0.23 (0.14-0.38)
Venous (VTE)	37	4	0.6 (0.4-0.8)
Patients with fatal and nonfatal thrombotic events	119	13	1.9 (1.6-2.3)

Barbui et al, JCO 2011, Carobbio et al, Blood in press

*EUROSTAT 2008

(crude death rates, all causes of death, EU 27 countries)

Barbui T, Thiele J et al, JCO 2011

Figure 1 Cumulative incidence of fatal and nonfatal thrombotic events versus deaths from other causes (competing risk analysis) in 707 patients with primary myelofibrosis

Barbui, T. et al. Blood 2010;115:778-782

Copyright ©2010 American Society of Hematology. Copyright restrictions may apply.

Rate of incident thrombosis in MPN

PV..... 6% pts per year

ET..... 2 % pts per year

PMF..... 2 % pts per year

Philadelphia–Negative Classical Myeloproliferative Neoplasms: Critical Concepts and Management Recommendations from European LeukemiaNet

Authors: Tiziano Barbui, Giovanni Barosi, Gunnar Birgegard, Francisco Cervantes, Guido Finazzi, Martin Griesshammer, Claire Harrison, Hans Carl Hasselbalch, Rudiger Hehlmann, Ronald Hoffman, Jean-Jacques Kiladjian, Nicolaus Kröger, Ruben Mesa, Mary F. Mc Mullin, Animesh Pardanani, Francesco Passamonti, Alessandro M. Vannucchi, Andreas Reiter, Richard T. Silver, Srdan Verstovsek, Ayalew Tefferi.

Barbui et al, JCO 2011

Deciphering the paradigma of thrombosis in MPN

What is known What should be done

HEMATOCRIT < 45% ?

Hematocrit

Time-dependent multivariate analysis on the relative risk of major thrombosis among men and women with Polycythemia Vera $(N = 1,638)^*$

		Hazard ratio (95% CI), P-value
Hematocrit (%)	≤ 45 (N=556)	1 (Reference)
	46-50 (N=530)	0.89 (0.6-1.3), 0.6
	> 50 (N=345)	1.04 (0.6-1.8), 0.9

*Model adjusted for: age, gender, time from PV diagnosis to recruitment, thrombotic or hemorrhagic events prior to recruitment, smoking, history of diabetes, hypertension, claudicatio intermittens, erythromelalgia, splenomegaly, circulating immature cells, leukocyte count, total blood cholesterol, phlebotomy use, interferon use, hydroxyurea use, antiplatelets use, anticoagulants use, ³²P use, busulfan use, chlorambucil use, and pipobroman use

Di Nisio, Barbui T. et al., Brit J Haemat, 2006

A patient can be randomized in the trial, provided she/he meets all recruitment criteria. Clinical visits at 3*, 6*, 12*, 18, 24*, 30, 36*, 42, 48*, 54, 6 0* months.

* the following laboratory tests must be performed: hematocrit, hemoglobin, red and white cell count, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, uricoemia, glucose levels, total CK, ALT, AST, creatinine, potassium, sodium, fibrinogen, spleen and liver ultrasonography (specific tests for PV to added).

Figure 1 – Study design

Platelet count < 400,000 Leukocytes < 10,000

Platelets

Time-dependent multivariate analysis on the relative risk of major thrombosis among men and women with Polycythemia Vera (N = 1,638)*

Hazard ratio (95% CI), P-value

Platelet number (x10 ⁹ /l)	≤ 300 (N=592)	1 (Reference)
	301-500 (N=622)	0.78 (0.5-1.2), 0.2
	> 500 (N=407)	0.67 (0.4-1.1), 0.1

*Model adjusted for: age, gender, time from PV diagnosis to recruitment, thrombotic or hemorrhagic events prior to recruitment, smoking, history of diabetes, hypertension, claudicatio intermittens, erythromelalgia, splenomegaly, circulating immature cells, leukocyte count, total blood cholesterol, phlebotomy use, interferon use, hydroxyurea use, antiplatelets use, anticoagulants use, ³²P use, busulfan use, chlorambucil use, and pipobroman use

Di Nisio , Barbui T. et al., Brit J Haematol. 2006

White Blood Cells

Outcome events - ET

Time-dependent multivariable analysis on the relative risk of major thrombosis in ECLAP study (N = 1,638)*

		Hazard ratio (95% CI), P-value
White blood cell count (x10 ⁹ /l)	≤ 10 (N=990)	1 (Reference)
	10.1-15 (N=365)	1.06 (0.7-1.6), 0.8
	>15 (N=241)	1.71 (1.1-2.6), 0.02

*<u>Model adjusted for:</u> age, gender, time from PV diagnosis to recruitment, thrombotic or hemorrhagic events prior to recruitment, smoking, history of diabetes, hypertension, claudicatio intermittens, erythromelalgia, splenomegaly, circulating immature cells, leukocyte count, total blood cholesterol, phlebotomy use, interferon use, hydroxyurea use, antiplatelets use, anticoagulants use, ³²P use, busulfan use, chlorambucil use, and pipobroman use

Landolfi et al., Blood 2007

* Reference categories:

Bergamo centre; Females; Low risk factors; HB < 13 g/dL; HCT < 39.5 %; PLT < 650 (x10⁹/L); WBC <7.2 (x10⁹/L); Absence of JAK2^{V617F}

Carobbio A et al., Blood 2007; JCO 2008 Barbui T et al, Blood 20010

PT-1 randomized clinical trial in high risk ET patients

(Hydroxyurea+asa vs Anagrelide+asa)

WBC & major hemorrhage WBC & thrombosis

p=0.01 **p=0.05**

NS

p =0.0005

Plts & major hemorrhage Plts & thrombosis

Campbell submitted 2010

Mechanisms of thrombogenesis in MPN Role of inflammation

Figure 1. Mechanisms which, in myeloproliferative neoplasms (MPN), can increase the thrombotic risk through cell activation and inflammation.

Landolfi, Haematologica 2011

OTHER BIOMARKERS

Linking inflammation to thrombosis

Cytokine and Growth Factor Levels in Patients with MF and Active Rheumatoid Arthritis

 The elevated levels of pro-inflammatory cytokines and growth factors in MF exceed that observed in RA in terms of both breadth and degree of elevation

JOURNAL OF CLINICAL ONCOLOGY

Fig 1. Survival data of (A) all 127 patients and (B) 90 treatment-naive patients with primary myelofibrosis stratified by the presence or absence of interleukin 8 (IL-8) and IL-2R levels that exceed three standard deviations above the normal mean.

Fig 2. Survival data of (A) 27 intermediate-1-risk patients and (B) 70 intermediate-2-risk patients with primary myelofibrosis stratified by the presence or absence of interleukin 8 (IL-8) and IL-2R levels that exceed three standard deviations above the normal mean. Risk categorization is according to the Dynamic International Prognostic Scoring System plus model.⁶

C-Reactive Protein

- CRP is an acute-phase protein produced by the liver in response to cytokine production (IL-6, IL-1, tumor necrosis factor) during tissue injury, inflammation, or infection.
- **Standard CRP tests** determine levels which are increased up to 1,000-fold in response to infection or tissue destruction.
- **High sensitivity CRP assays** detect levels of CRP within the normal range. These levels were proven to predict future cardiovascular events.

Risk Factors for Future Cardiovascular Events: WHS

Ridker et al, N Engl J Med. 2000;342:836-43

Hs-CRP in MPNs

 We tested the hypothesis that blood levels of hs-CRP could be correlated with thrombotic complications in patients with ET and PV and explored the relationship with JAK2V617F mutation.

High sensitivity C-reactive protein (hs-CRP)

hs-CRP tertiles and risk of thrombosis

	1.0 to 3.0 mg/L hs-CRP			More than 3.0 mg/L hs-CRP			
	OR*	95% CI	Р	OR*	95% CI	р	
Unadjusted	1.89	0.89-3.99	0.10	2.59	1.21-5.51	0.014	
Adjusted for							
+ Age	1.82	0.86-3.86	0.12	2.27	1.04-4.95	0.039	
+ Sex	1.83	0.86-3.91	0.12	2.36	1.08-5.18	0.032	
+ Disease	1.80	0.84-3.85	0.13	2.25	1.02-4.96	0.045	
+ JAK2V617F burden	1.60	0.73-3.47	0.23	2.11	0.93-4.80	0.074	

*Reference categories: hs-CRP < 1.0 mg/L

QUESTION

Does the strength of association between these biomarkers and thrombosis justify their use as surrogate of primary end-points in clinical trials?

Surrogate endpoint: definition

- A surrogate endpoint of a clinical trial is a laboratory measurement or a physical sign used as a substitute for a clinically meaningful endpoint
- Changes induced by a therapy on a surrogate endpoint are expected to reflect changes in a clinically meaningful endpoint.
- Surrogate end points can be useful in phase 2 screening trials for identifying whether a new intervention is promising enough to justify a large definitive trial with clinically meaningful outcomes.
- **Definitive phase 3 trials are required,** except for rare circumstances in which the validity of the surrogate end point has already been rigorously established.

JAK2 V617F and Thrombosis in PV or ET

Vannucchi et al, Blood 2007; Vannucchi et al, Leukemia 2007

Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in PV

JOURNAL OF THE AMERICAN SOCIETY OF HEMATOLOGY

Evolution of %V617F during treatment with peg-IFN-2a

Kiladjian, J.-J. et al. Blood 2008;112:3065-3072

Randomised Trial of Pegylated Interferon Alfa -2a versus Hydroxyurea for the treatment of high risk polycythemia vera and high risk essential thrombocythemia(MPD-RC trial)

Primary end points

To evaluate the ability of therapy (Pegylated Interferon α 2a vs. Hydroxyurea) to achieve **Complete Response** (By LeukemiaNet Criteria) in patients with either high risk polycythemia vera or high risk essential thrombocythemia (stratified by disease group) **after 24 months of therapy**.

Secondary end points

Partial response, JAK2 V617F allele burden, toxicity and tolerability, major cardiovascular events, evolution to AML or MF, overall survival

Study population -

CYTO-PV is a multicenter, randomized, controlled trial with diagnosis of PV (WHO 2008)

designed to be conducted, without need of special facilities. It is an independent, investigator-generated, pragmatic trial with broad selection criteria

to mimic clinical practice in order to strengthen the transferability of its results to the population of PV patients.

Sample size calculation

Time to death and major thrombotic events are the primary endpoints(PEP) of the sudy

Assumption for PEP

In the ECLAP study (median follow-up 2.8 years) the cumulative incidence of PEP was

- 5.5% per year in the overall population of PV pts
- 6.95% per year in high-risk PV group

Number of patients to be recruited

The minimum follow-up is set at 5 years. The expected cumulative rate of PEP is 5% (25% in 5 years).The minimum clinically relevant beneficial effect is set at 30% reduction of PEP. Number of patients to be recruited is 1000.

Definition of clinico-hematologic response in ET

Response grade	Definition
Complete response	 Platelet count =< 400 x109/L AND No disease related symptoms AND Normal spleen size on imaging AND WBC count < 10 x 109/L
Partial response	In patients who do not fulfill the criteria for complete response: Platelet count below 600 x 109/L or decrease > 50% of baseline
No response	Any response that does not satisfy partial response

Hydroxyurea in essential thrombocythemia:

Figure 1 Rate of responses according to ELN criteria

Copyright ©2010 American Society of Hematology. Copyright restrictions may apply.

Carobbio, A. et al. Blood 2010;116:1051-1055

Copyright ©2010 American Society of Hematology. Copyright restrictions may apply.

Clinical evaluation of the European LeukaemiaNet criteria for clinicohaematological response and resistance/intolerance to hydroxycarbamide in essential thrombocythaemia

2010 Blackwell Publishing Ltd, British Journal of Haematology, 152, 81–88

Definition of clinically relevant end points in Ph-neg Myeloproliferative Neoplasms ELN-WP9 2011 project

To provide guidance in the **definition of clinically relevant end-points and appropriate surrogates** that can expedite new drug approvals for MPNs

ACKNOWLEDGEMENT

Bergamo	S. Cortelazzo,G Finazzi, A Falanga, A Carobbio A Rambaldi and our patients.
Vicenza	F Rodeghiero, M Ruggeri
Firenze	A Vannucchi
Pavia:	G Barosi and F Passamonti
GIMEMA	MPN Working Party
ELN	and particularly JJ Kiladjian
Cologne	J Thiele
Mayo Clinic	A Tefferi and R Mesa
MPD-Consortium	R Hoffman and S Fruchtman